The Epigenetic Bivalency of Core Pancreatic β-Cell Transcription Factor Genes within Mouse Pluripotent Embryonic Stem Cells Is Not Affected by Knockdown of the Polycomb Repressive Complex 2, SUZ12

نویسندگان

  • Jennifer C. Y. Wong
  • Michelle M. Jack
  • Yan Li
  • Christopher O'Neill
چکیده

This study assesses changes in activator and repressor modifications to histones associated with the core transcription factor genes most highly upregulated or downregulated in pancreatic β-cells relative to expression in an embryonic stem cell line. Epigenetic analysis of the Oct4, Utf1, Nanog and Sox2 (pluripotency) and Pdx1, Nkx6.1, Nkx2.2 and MafA (pancreatic β-cells) transcription factor genes in embryonic stem cells and a β-cell line (MIN6) showed the pluripotency genes were enriched for active (histone 3 trimethylated at lysine 4 and histone 3 acetylated at lysine 9) and depleted of repressor modifications (histone 3 trimethylated at lysine 27 and histone 3 trimethylated at lysine 9) around the transcription start site in mouse embryonic stem cells (D3), and this was reversed in MIN6 cells. The β-cell transcription factors were bivalently enriched for activating (histone 3 trimethylated at lysine 4) and repressor (histone 3 trimethylated at lysine 27) modifications in embryonic stem cells but were monovalent for the activator modification (histone 3 trimethylated at lysine 4) in the β-cells. The polycomb repressor complex 2 acts as a histone 3 lysine 27 methylase and an essential component of this complex, SUZ12, was enriched at the β-cell transcription factors in embryonic stem cells and was reduced MIN6. Knock-down of SUZ12 in embryonic stem cells, however, did not reduce the level of histone 3 trimethylated at lysine 27 at β-cell transcription factor loci or break the transcriptional repression of these genes in embryonic stem cells. This study shows the reduction in the total SUZ12 level was not a sufficient cause of the resolution of the epigenetic bivalency of β-cell transcription factors in embryonic stem cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells

Numerous developmentally regulated genes in mouse embryonic stem cells (ESCs) are marked by both active (H3K4me3)- and polycomb group (PcG)-mediated repressive (H3K27me3) histone modifications. This bivalent state is thought to be important for transcriptional poising, but the mechanisms that regulate bivalent genes and the bivalent state remain incompletely understood. Examining the contributi...

متن کامل

Comments on control of developmental regulators by polycomb in human embryonic stem cells.

Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of over two hundred genes encoding key d...

متن کامل

Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2.

Polycomb repressive complex 2 (PRC2) plays a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use short hairpin RNA-mediated knockdown to surv...

متن کامل

Dev111997 722..731

Neural crest cells arise from the border of the neural plate and epidermal ectoderm,migrate extensively and differentiate into diverse cell types during vertebrate embryogenesis. Althoughmuch has been learnt about growth factor signals and gene regulatory networks that regulate neural crest development, limited information is available on how epigenetic mechanisms control this process. In this ...

متن کامل

Polycomb repressive complex 2 impedes intestinal cell terminal differentiation.

The crypt-villus axis constitutes the functional unit of the small intestine, where mature absorptive cells are confined to the villi, and stem cells and transit amplifying and differentiating cells are restricted to the crypts. The polycomb group (PcG) proteins repress differentiation and promote self-renewal in embryonic stem cells. PcGs prevent transcriptional activity by catalysing epigenet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014